Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 26: 101038, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638704

RESUMO

The ideal implant surface plays a substantial role in maintaining bone homeostasis by simultaneously promoting osteoblast differentiation and limiting overactive osteoclast activity to a certain extent, which leads to satisfactory dynamic osseointegration. However, the rational search for implant materials with an ideal surface structure is challenging and a hot research topic in the field of tissue engineering. In this study, we constructed titanium dioxide titanium nanotubes (TNTs) by anodic oxidation and found that this structure significantly promoted osteoblast differentiation and inhibited osteoclast formation and function while simultaneously inhibiting the total protein levels of proline-rich tyrosine kinase 2 (PYK2) and focal adhesion kinase (FAK). Knockdown of the PYK2 gene by siRNA significantly suppressed the number and osteoclastic differentiation activity of mouse bone marrow mononuclear cells (BMMs), while overexpression of PYK2 inhibited osteogenesis and increased osteoclastic activity. Surprisingly, we found for the first time that neither knockdown nor overexpression of the FAK gene alone caused changes in osteogenesis or osteoclastic function. More importantly, compared with deletion or overexpression of PYK2/FAK alone, coexpression or cosilencing of the two kinases accelerated the effects of TNTs on osteoclastic and osteogenic differentiation on the surface of cells. Furthermore, in vivo experiments revealed a significant increase in positiveexpression-PYK2 cells on the surface of TNTs, but no significant change in positiveexpression -FAK cells was observed. In summary, PYK2 is a key effector molecule by which osteoblasts sense nanotopological mechanical signals and maintain bone homeostasis around implants. These results provide a referable molecular mechanism for the future development and design of homeostasis-based regulatory implant biomaterials.

2.
ACS Biomater Sci Eng ; 9(8): 4735-4746, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37428711

RESUMO

Extracellular matrix (ECM) stiffness is a key stimulus affecting cellular differentiation, and osteoblasts are also in a three-dimensional (3D) stiff environment during the formation of bone tissues. However, it remains unclear how cells perceive matrix mechanical stiffness stimuli and translate them into intracellular signals to affect differentiation. Here, for the first time, we constructed a 3D culture environment by GelMA hydrogels with different amino substitution degrees and found that Piezo1 expression was significantly stimulated by the stiff matrix with high substitution; meanwhile, the expressions of osteogenic markers OSX, RUNX2, and ALP were also observably improved. Moreover, knockdown of Piezo1 in the stiff matrix revealed significant reduction of the abovementioned osteogenic markers. In addition, in this 3D biomimetic ECM, we also observed that Piezo1 can be activated by the static mechanical conditions of the stiff matrix, leading to the increase of the intracellular calcium content and accompanied with a continuous change in cellular energy levels as ATP was consumed during cellular differentiation. More surprisingly, we found that in the 3D stiff matrix, intracellular calcium as a second messenger promoted the activation of the AMP-activated protein kinase (AMPK) and unc-51-like autophagy-activated kinase 1 (ULK1) axis and modestly modulated the level of autophagy, bringing it more similar to differentiated osteoblasts, with increased ATP energy metabolism consumption. Our study innovatively clarifies the regulatory role of the mechanosensitive ion channel Piezo1 in a static mechanical environment on cellular differentiation and verifies the activation of the AMPK-ULK1 axis in the cellular ATP energy metabolism and autophagy level. Collectively, our research develops the understanding of the interaction mechanisms of biomimetic extracellular matrix biomaterials and cells from a novel perspective and provides a theoretical basis for bone regeneration biomaterials design and application.


Assuntos
Proteínas Quinases Ativadas por AMP , Osteogênese , Trifosfato de Adenosina , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , Materiais Biocompatíveis , Cálcio , Diferenciação Celular/genética , Osteogênese/genética , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...